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ACOUSTIC DATA PROCESSING USING THE

DECENTRALIZED SQUARE ROOT INFORMATION FILTER

Project Summary

Very Large Scale Integration'-(VLSI# technology has been developed to the

point where special purpose processors may be concatenated to form

supercomputers with far greater throughput rates than uniprocessor machines.

MTI has developed a parallel form of the conventional Kalman filter that is

well suited to being implemented in a multiprocessing environment. Moreover,

our Decentralized Square Root Information Filter (DSRIF) has several very

unique features which could be incorporated into the design of an integrated

undersea tracking system with much improved performance over existing methods.

Phase I research demonstrated feasibility of the DSRIF as a means for

solving the linear least squares estimation problem in decentralized form.

Underwater tracking of a high velocity torpedo (undergoing high dynamic

maneuvers) was simulated. Also, an extended form of the DSRIF was used to

complete the processing of real Multiple Rocket Launch System Data provided by

the White Sands Missile Range. In this case, an adaptive form of the extended

DSRIF, wherein the process noise levels were made to be a function of the

globally optimal estimate error covariance, was successfully used to track the

rocket data. i '/ I )
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LIST OF SYMBOLS

i superscripted local system number

j superscripted vector element number

k time index, may be subscripted or enclosed in parentheses

xk global state vector

wk global process noise vector

k global state transition matrix
i

xk local state vector

ox i  origin of a local coordinate system in earth
centered earth fixed coordinates

ox origin of the global coordinate system in earth
centered earth fixed coordinates

or i  radial vector from earth's center to the

origin of a local coordinate system

wk local process noise vector

local state transition matrix

yk local measurement vector

k global observauion sub-niatrix

Hk local observation matrix

vk local measurement noise vector

xk(±) measurement updated) global state estimate

time updated

x'(±) (measurement updatedm ulocal state estimate

Pk(±) (measurement updated global estimate error covariance matrixK time updated /

P((±) measurement updoted local estimate error covariance mat-ix
time uodated /

k matrix of zeros and ones which partition the global states to the

local systems

Ok covariance matrix for process noise vector
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R1 covariance matrix for local measurement noise vector

PO(- )  initial global estimate error covariance matrix

N number of time samples

M number of local systems

Mi  number of local measurement variables

zw(k) "pseudomeasurement" vector

Rw(k) inverse square root of Qk

Rk(±) (measurement updated) global square root information matrix

\ time updated

Zk(±) (measurement updated) global square root information vector
\ time updated

Rl(±) measurement updated local square root information matrix
time updated

zk(±) (measurement updated local square root information vector
time updated

eik local "innovations" vector

i) (i) (i)
R*(k) Rwx(k) z*(k) local smoothing coefficients

Rw(k) R~x(k) z:(k) global smoothing coefficients

z*(k) H*(k) merge coefficients

t continuous time variable

di local coordinate system displacement vector

L latitude of global coordinate system origin

S longitude of global coordinate system origin

Pi Euler angles defining the orientation of the local coordinate system
Ti w.r.t, to the global coordinate system

re average earth radius

1Ti orthogonal transformation in local time update

2Ti orthogonal transformation in local measurement update
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3Tk orthogonal transformation in first merge step

4 Tk orthogonal transformation in second merge step

Ti orthogonal coordinate transformation between the local and global

coordinate system

Tg orthogonal coordinate transformation between the global coordinate

system and the earth centered earth fixed coordinate system

product of G and re

ri range measurement

rk range rate measurement

k elevation angle measurement

k azimuth angle measurement

G gravitational constant

me earth's mass

Q earth's angular velocity

u(t) deterministic control

f(x(t),u(t)) nonlinear dynamics vector

hi(x(t)) nonlinear local observation vector

Fk linearized dynamics matrix
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1.0 Introduction and Problem Statement

The trajectory estimation problem is a problem of nonlinear estimation.

Assume that the state of a target evolves in Lime according to the equation

x(t) = f(x(t),u(t)) + w(t) (W)

where u(t) is the target's nominal control vector and w(t) is a zero mean

white noise process with spectral dcisity 0(t). Values for the latter are

selected in order to compensate for errors in the model which may originate

from unknown perturbations to the nominal control (such as turbulence, strong

currents, large surface waves, etc.) as well as from uncertainties in the

hydrodynamics of the target vehicle. The correspcnding di',crete measurement

vector for the i
t h sensor is given by

y' = hi(xk) + v1 (2)

where vk is a zero mean white noise sequence with covariance Rk. The problem

is to estimate the target states xk based upon all of the pas
t measurements y

where {(1i M and 1 lk). fhe state vector xk contains the target position and

velocity, biases which account for the displacement and orientation of the

sensor or "local" coordinate systems (LCSs) w.r.t. the global coordinate

system (GCS), and acceleration when the target vehicle is maneuvering.

Unfortunately, the optimal nonlinear estimator (conditional mean) cannot

be realized with a finite-dimensional implementation and consequently, all

practical nonlinear filters must be suboptimal. The usual suboptimal solution

is the Conventional Kalman Filter when the nominal trajectory is known a

priori, the Extended Kalman Filter when the nominal trajectory is unavailable,

and Higher Order Filters (such as th, second order filter [3], the single-

stage iterative filter [4], and the Gaussian sum filter [5], among others [6])

when even greater accuracy is desired. The tradeoff here is performance

versus real-time computational requirement.

Thus, we see that the ability of a sensor group to accurately record the

motion of one or more underwater targets is a function of the individual

target and sensor dyncIical models as well as the particular algorithm used to

combine raw data and produce track estimates. Another issue is intersensor

communication. Sensors which operate independently from one another will

exhibit larger estimate errors than ones which communicate with other members

of the network.

Let the global discrete time linear system

Xk = Ik-1 Xk-1 + wk-1 (3)

where

wk = N(O,Qk) (4)

x0 = N(O,P0 (-)) (5)

be the target dynamics linearized about the nominal trajectory (or estimate),

and the global measurement model

13



xk + (6)

1 M

Mk CM  vM

where vk through vk are uncorrelated random vectors and

vk = N(O,Rl) (7)

be the model for the tracking sensors. The problem is to calculate the
globally optimal (minimum mean square error) estimate of xk and its associated
estimate error covariance matrix Pk when y1 M

k k through Yk are processed
separately by locally optimal estimators 1 through M correspondingly. The
local dynamical models are

1 -= xl -I + wl- (8)

where

wk = N(o,Q) (9)

X0= N(O,P'(-)) (10)

and the local measurement models are

= k k + vk (11)

where vi satisfies (7). Notice that the local states may be physically
different from the global states. Wilsky et.al. [7] have recently shown that
a necessary and sufficient condition for our being able to recover globally
optimal state estimates from locally optimal ones is that

k= H Mk (12)

and for the tracking application, we expect that

xk (13)

where Mi is a matrix which results in the correct partitioning of global

states to the subsystem filters. Alternatively, equation (12) allows us to
define the local state vector in terms of the local coordinate system. In

this case, Mi is the orthogonal matrix which defines the transformation
between local and global coordinate systems.

*Lower case variables are vector quantities while upper case generally
corresponds to matrices of appropriate dimension. Also wk, x0, and vk

through v~ are uncorrelated with each other for all k and N(ar)

signifies an a mean white Gaussian process with covariance matrix F
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1.1 The Decentralized Square Root Information Filter as a Solution

Decentralized processing is achieved by distributing the minimization of
the conventional least squares performance criterion amongst the local filters
and global merging equations that follow (see [I] or our Phase I proposal to
DARPA for details). Let

1 I (14)Mk =

The best distribution for multisensor tracking is probably to minimize
Hk xk - z' 112 in each of the M local filters and minimize the remaining

two terms in the performance criterion within the central (merge) processor.
However, this point will be explored in detail in Phase II research. Thus,
each of the tracking sensors may be processed using the standard SRIF
mechanization. For the ith sensor, we have

Measurement Update

I Rl(-) z(-) jRl(+) zl(+) I

1Tk I I = I I (15)
(R)- Hi (R) y 0 ek ]

Time Update

2 Rw(k) 0 Zw(k)

I -RR(+) k (+) k Zk(+)

S (i) (i) (i)R (k) R *x(k) z *(k) 1

(i(i)16)

0 Rk+l(- )  Zk+l(- )

where

Roi(-) zi(-) 0 0 ],(17)

[ Rw(k) zw(k) ] = [ 0 0 ] , (18)

-1

the a priori estimate { R0  (-) zo(-) ) has covariance

-1 -T
P 0 (-) = R0  (-)R 0  (-) , (19)
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-1 -T

Ok = Rw (k) Rw  (k) (20)

zw(k) = Rw(k) times the a priori expectation of wk, and the pair ( z, H k I

correspond to normalized measurement equations i.e., Rk I. Also, T' and
2Ti are orthogonal transformations which put the matrices on the left hand

sides of (15) and (16) respectively into upper triangular form. They may be

implicitly computed using Householder transformations.

The local smoothing coefficients are combined with process noise and

prior on x0 by solving the following recursive equation:

(1) (1) (1)
w

(M) (M) (M)
3T k  R*(k) Rwx(k) Zw(k)

Rw(k) 0 Zw(k)
-1 -1

LH*(k-1) Ik H*(k-1) Ik z*(k-1)

R*(k) Rwx(k) z*(k)

= 0 H*(k) z*(k) (21)

0 0 #

L.._

[ H*(-1) z*(-1) J = [ RO(-) ZO(-) ] (22)

and H*(k) is upper triangular. To obtain the globally optimal information

vector zk(+) and square root information matrix Rk(+), we solve the following

equations using H*(k) and z*(k) from (21):

(1) (1)
Rk(+) Zk(+)

Rk(+) k)

4 Tk = (23)
(M) (M)

Rk(+) Zk(+) K #

H*(k-1) z*(k-1)

16



where 4Tk is an orthogonal transformation which puts the left hand side of
(23) in upper triangular form. Globally optimal filter estimates and
covariances are then given by

-1

Xk(+) = Rk (+) Zk(+) (24)

-1 -tr
Pk(+) = Rk (+) Rk  (+) (25)

When the a priori information about the initial condition and process noise
models are adjusted, it is only necessary to rerun (21) and (23) without
reprocessing any measurements.

To summarize, the measurements from each tracking sensor may be processed
by a local SRIF

Local

sensor #1 SRIF

Central Central Central

Merge Merge Merge Xk(+ )

sensor #M SRIF Processor Processor hiProcessor Pk(+)

Stage #1 Stage #2 Stage #3
I I

Local
Xo(-),Po(-),Qk SRIF

#M+1

(i)
(15)-(20) which generates a set of smoothing coefficients Rw*

(i) (i) (i).
Rx(+) ,Zw(+) as well as a square root information matrix R(+) and

(i)
information vector z(+) The central or merge processor consists of three
separate processors which operate in parallel. The first mechanizes (21),(22)
which combines the local smoothing coefficients with the effects of process
noise and prior information about the initial state. The second mechanizes
(23) which merges the local square root information matrices and vectors with
output from the first, but only upon demand by the third. The third produces

17



estimates and covariances whenever desired by back-solving (24) and (25)

respectively, noting that (24),(25) require output from the second processor.

An important observation is that feedback of information from the merge

processor to the local filters is not necessary here. This helps to keep the

bandwidth of communication between the local processors and merge processor

from exceeding hardware limitations.

2.0 Results of the Phase I Work

In order to validate our decentralized approach to solving the linear

least squares estimation problem, two tasks were performed. First, in the

next section 2.1 we construct and execute a simulation of the DSRIF within an

underwater test range environment. The nominal trajectory is assumed to be

known a priori so that actually, perturbations to the nominal are estimated.

Then, in section 2.2 we complete our processing of real Multiple Rocket Launch

System Data provided by the White Sands Missile Range. In this case, an
adaptive form of the extended DSRIF, wherein the process noise levels were

chosen to be a function of the globally optimal estimate error covariance, was

used.

2.1 Validation of the DSRIF for a Simulated
Underwater Zig-Zag Maneuver

A low level simulation of an underwater multisensor network, tracking a

maneuvering underwater vehicle was encoded in Fortran '77 and executed on an

IBM (clone) Model AT desktop computer (640K ram, 40 Mbyte hard disk, Intel

80287 math coprocessor). Initial conditions for the nominal trajectory were
calculated using a "flat earth" or constant gravitational acceleration model

which neglects the earth's rotation, neglects hydrodynamic drag, and assumes

that the target vehicle is a point mass.

The initial position is located within the polygon formed by connecting

adjacent sensors, and the desired terminal position is 1.86 miles downrange.

However, 2 instantaneous reversals of the cross range velocity at 42 and 124

seconds were made, and this resulted in a total path length of 2.62 miles
when projected onto the "Range Area General Map" (RAGM)" (which we use to

define the GCS). That is, x ,x2,x is a right handed coordinate system

where the vector cross product of xI with x2  is equal to x3 , and the
vectors [x1 0 0] and [0 x2 0] point east along latitude 32.380 degrees

and north along longitude 106.481 degrees respectively. Then [0 0 x3 ] is

collinear with the radial vector which points outward from the earth's center
and passes through the origin of the GCS. Choosing the launch elevation

angle, w.r.t. the xlx 2 tangent plane, to be -3.96 degrees results in a

200 ft depth variation over the path length. The corresponding initial

position and velocity is

18



nII

x I 7,920 feet

0x I5,280 feet

A I 0 feet

0A -4.14 feet/sec (26)

4' 59.74 feet/sec

0A 59.74 feet/sec

and the total time to traverse the path was 167 seconds.

Five sensor locations which surround the projected flight path were

selected. Each sensor records measurements with respect to its own LCS so

that coordinate transformations to the GCS were derived and included in the

observational equations. The transformation is

I Fxi: 11

L J (Ti) xi 2 + di (27)3 /xi,2 !  d

where

Ti = ( 8 Ti ) ( 7Ti ) ( 6 T' ) ( 5Ti ) (28)

and

F1 0 0
5Ti = 10 cos(L+a i ) sin(L+a i ) (29)

0 -sin(L+a i ) cos(L+a i )

LCos 13 0 -sin p 7
=T 0 1 0(30)

sin 1i 0 cos 13i

1 0 0
7Ti = cos L -sinL (31)

0 sin L cosL

F cos Ti sin Ti 07
8Ti -sin Ti  COS Ti  0 (32)

0 1

19



noting that (Ti)tr = (Ti)-1 since Ti is an orthogonal transformation. A
computational savings results when (5Ti)( 6Ti)( 7Ti) are combined using
trigonometric identities for the cosine and sine of the sum of two angles
along with the small angle approximation since ai is bounded by ±.025
degrees over the length of the underwater Test Range.

di Is the vector from the GCS to the ith LCS and ai,1i,T i are the
three Euler angles describing the orientation of the ith LCS w.r.t. the GCS.
Specifically, if we first rotate about xI counterclockwise by an (L+ai )

degree change in latitude (aligning y2 with the polar axis), and then rotate
counterclockwise about y2  by a pi degree change in longitude, ( pi is
bounded by ±.025 degrees over the width of the Test Range) then rotate
clockwise about x3  by an L degree change in latitude, and finally rotate
about z4  by T1 degrees to account for "tan gent plane misalignment", the
LCS will coincide with the GCS when di = 0. a' Is equal to the LCS latitude
- GCS latitude. Oi  Is equal to the LCS longitude - GCS longitude.

To determine ai , 0i given L, & and di (in global coordinates),
solve the following two equations:

1xi oX  I I di'l I

Ox'.2  = Iox + Tg d ' 2 I (33)0 .3 Iox' Idi.

rL i ECEF L- -JECEF L -J GCS

where

SoXi F- r cos L cos 8I oX2  = I-re cos L sin I (34)

Lox3  Lre sin L
L- -ECEF L

and

r- -
sin & -cos S 0 I 1 0 0

Tg = Cos & sin S 0 1 0 sin L -cos L (35)

0 0 1 L 0  cos L sin L

Oxi,2|  = ori cos (L+ai ) cos

°xi'" or " cos (L+ai ) sin (S+pi) (36)

oi ECEF or1 sin (L+ai )

The solution is

L~ai .tan-1(oXi,)
2

- tan-  (L+ai) t 32 degrees (37)
(oxi,1)2 + (oXi,2)

2
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+pi= Cos-I cos (S+i) z 106 degrees (38)

oi cos (L+ai)

where

oXi,
3

o sin (L+a i ) (9

The results are given in Table 1 below.

Sensor
Type di' 1  di, 2  di, 3  L+ai S+'i Ti

1 ps 0.50 0.50 0. 32.3872 106.4724 0.
2 ps 0.25 3.00 0. 32.4233 106.4767 0.
3 as 2.00 4.00 0. 32.4378 106.4467 0.
4 ps 2.50 2.00 0. 32.4089 106.4382 0.
5 as 3.00 1.00 0. 32.3944 106.4296 0.

Table 1: Passive Sonar (ps) and Active Sonar (as) Locations and
Orientations in GCS for the Underwater Target

Detailed equations that describe the translational motion of the target
were developed. The equations include a radial gravitational force as well as
centrifugal and Coriolis forces which come about by rotation of the GCS about
the polar axis. The equations are

-Px
1

X-= + 22(x5sin L - x6 cos L) + 92 xl (40)

((xl) 2 + (x2 )2 + (x3+re) 2 )3 /2

5 = - 2Qx4 sin L

((Xl) 2 + (x2 )2 + (x3+re)
2 )3 /2

+ Q2 (x2sin 2 L - (x3+re)cos L sin L) (41)

-p( x3+re)
-6 r + 2Qx4cos L

((xl) 2 + (x2 )2 + (x3 +re)
2 )3 /2

+ Q2 ((x3+re)cos2 L - x2 cos L sin L) (42)

where

= G me  (43)

21



and all other variables are defined in the List of Symbols. A spherical

harmonic expansion of the earth's gravitational field is not necessary since
the variation in target depth was small relative to the earth's radius.

However, a major effect is hydrodynamic drag and buoyancy which we accounted
for by reducing G to 1/1000 of its correct value. Thus, the trajectories

tended to be unstable (due to centrifugal forces dominating) but reasonable
ones could be obtained by careful tuning of the initial condition. More
precise modeling will be undertaken in Phase II.

Any one of three sensor types may reside at each sensor location. The

three types are

active sonar wherein range (ri), azimuth (ri) and elevation (81) data
are available,

passive sonar wherein azimuth and elevation data are available, and

doppler sonar wherein range, range rate (r"), azimuth and elevation

data are available.

The observational equations in terms of the global state are

ri = ((xl-di,1) 2 + (x2-di,2 )2 + (x3-di,3)2 )1/2  (44)

F 1 -u 1 - -I

[0 0 1] (Ti)trI x2 -i, 2 I

L- -J

ei = sin - 1  (45)
((xl-di,1) 2 + (x2-di,2 )2 + (x3-di,

3 )2 )1/2

r-x -dil

[0 1 0] (Ti)tr x 2 -d i ' 2

x 3Sd i , 3

ri = tan -1  (46)

[1 0 0] (Ti)tr x2-d i '2

x3_di,3

x4 x5 x6 ] x2-di, 2

X3di,3 (47)

((xl-di,1)
2 + (x2-di,

2 ) 2 + (x3-di,3)
2 )1/

2
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The various measurement variables are defined by Figure 1 that follows.

xi,3

r1

i xi, 2

x '

Figure 1: The Local Coordinate System and Measurement Variables

The nonlinear equations of motion (40)-(42) were integrated forwards in
time starting from (26) and using the Fourth Order Runge Kutta method with a
1 second interval. Figures 2 and 3 show the resultant trajectory of the

target vehicle. As a further check on the Fortran code for this part of the

simulation, the total translational energy (kinetic plus potential) of the

target was computed for each point along the computed trajectory. The total

energy remained constant to within 1% as it should since there are no

external forces (u(t) = 0) and the system is conservative. Figures 4

through 8 show some of the corresponding measurements for the various data-

types with vi = 0 for {1 i M).

Each row of A(t) is computed by partial differentiating the same row of

f(x(t)) w.r.t. the nominal state. Thus, A(t) has the following structure

0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

x I  X6

A(t) = (48)

1 6 X6

L xi ~ X 6 -
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where

x- 4 3p(xl )2
-=+ + 9

~xi ((x 1)2 + (x<2)2 + (x3+re )2)3/2  ((x 1)2 + (x2)2 + (x3+re )2)5/2  (49)

X*4 3puxlx 2

- = (50)
x2  ((xl) 2 + (x2 )2 + x re25/

x3px 1(x+re)
- = -(51)

X ((Xl) 2 + (x2 )2 + (x3+re )2)5/2

-= 0 (52)

- - 2Qsin L (53)
.x5

- = -29cos L (54)

AX6

- = (55)
1xl ((xl) 2 + (x2)2 + x re25/

~x2  ((x 1)2 + (x2)2 + Cx3+re )2)3/2  ((xl) 2 + (x2)2 + x re25/

+ Q~i2L (56)

.5 3 ~)2)5/2) Q2cos L sin L (57)

~X3  ((Xl) 2 + (x2)2 + (x3+re))I

.,x5

- - -29sin L (58)
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- = 0 (59)

x

- = 0 (60)x6

6 3pxl(x +re )

- = (61)
x1  ((xl) 2 + (x2 )2 + (x3+re)2 )

5 /2

X6 5N2(xS3+re)
= 3)4xx 3-- e -

2cos L sin L (62)

-x2  ((xl) 2 + (x2 )2 + (x3+re)2)5/2

X6 -3 3(x 3+re)2

>-x3  ((xl) 2 + (x2 )2 + (x3+re) 2 )3/2  ((xl) 2 + (x2 )2 + (x3+re)2)5/2

+ 92COS2 L (63)

-= 29cos L (64)

x4

x= (65)
x5

-=0 (66)

Each row of C1 (t) is computed by partial differentiating the some row of
hi(x(t) w.r.t. the nominal state. Thus, when the ith sensor is a doppler

sonar, C1 (t) has the following structure
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0 0 0

0 0 0

where

-i =idi 
(68)

AL1 ((xl-d'1) 2 + (x2 -di, 2 )2 + (3d,))/

-r =2d, (69)
JX ((xl-di,1)2 + (x2 -di" 2 )2 + (3d,))/

) ri ~ x3 -d'' 3  
(0

-x ((xl-di1) 2 + (x2 -~di 2 )2 + (X3 -di,3 )2 )1/2  (0

ri 'ri r

4 0 (71)

~ri (x4 (xl-di'1 ) + x5 (x2 -di' 2 ) + x6 (x3-d''3 ))(xl-d'' 1 )

x(( -i12+ Cx2 -d1i2 )2 + (x 3 -di, 3 ) 2 ) 3 / 2  (2

+ ((xl-di1) 2 + (x2 -di.2 )2 + (x5 -d1i5 )2 )1/2  (73)
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~ri (x4 (xl-d'Il) +. x5(x2 -di,2) + 6x-'3)x-'2

-X ((Xl-d''1)2 + (x2-d',2)2 + xd323/

X5

+((x 1-di1l)2 + (x2 d',2 )2 + x-,321 (4

Sr-i (x4(xl-di'1 ) + x5(x2 -di,2) + x8(x3-di, 3))(x3 -di" 3)

0 ((x -di1) 2 + (x 2 -d1, 2 ) 2 + (3d,))/

+ (75)
((x -di1)2+ (x2 -di' 2 )2 + 4- d,21/

(76)
X4 ((xl-di"1)2 + (x2 -di,2 )2 + (3d,))/

~X5  ((xl-di' 1)2 + (x2 -d1.2)2 + (x3 -~d1.3)2)1/
2  (7

r )C3 _di, 3

2 X6  ((xl-di1) 2 + (x2 -~di, 2)2 + (x3-d''3)2)1 /2  (78)

[0 0 1] CTi)tr L2-di21 (xl-di'1 )
X3di,

3

Gi 1

jX1  (1-u2)112  ((x 1-di1) 2 + (x2 -di,2)2 + (3d,))/

[0 0 1] CTi)tr 0~
+0

+ ( -i12+ (x2 -d1,2)2 + (x3 _di,3)2)1/2  (79)

where u is the argument of sin-1 in equation (45).
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[0 0 1] (Ti)tr X2 _di 2  (x2 -di, 2 )

9eiI

X2 (l-u2 )1/2  (Cxidi,1 )2 + (x2 -d'.2 )2 + (3d,))/

[0 0 1] (Ti)tlj

10

+ ((i~di1)2+ (x2-d',2 )2 + 3_i321 (0

7x1-d1, i7
[0 0 1] (Ti)tr Ix2-d":2 f(x3-d',3)

)G i 1Lx i3

~x3  (,_u 2 )1/2  ((Xl~di1) 2 + (x2-d',2 )2 + (x3 -d',3 )2 )3 /2

[0 0 1] (Ti)tr 0

L11
((x1-i,)2+ (x2-d''2 )

2 + Cx3 -d1,
3 )2 )1/2  (81)

9~i ~E' E~
-- = 0 (82)

xl-di'l 1

[ 1u2 0 1 0] (Ti)tr 12d, 1 0 0] (Ti)tr L0
([1 0 0] (Ti)tr X-i2 )
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[0 1 0] (Ti)trj001
0--

+ (83)

[1 0 0] (Ti)tr fx2 -di,2
x3d I

where u is now the argument of tan-1 in equation (46).

[0 1 0] (Tit x2 d1 [1 0 0] (Ti)tr

~~Fi 1 3

x2  (1+u2 ) I

0 ](i)tr x2-di 2  )2
El 0 ] (Tx _d i,

f--I
10

[0 1 0] (Ti)tr L1
+ (84)

[1 0 0] (Ti)tr x2...i,2

LX3_di,31
1i-di,li F0

(1u)[0 1 0] (Ti)tr [1d,2 E 0 0] (Ti)tr L0
El[ 0 0] (Ti)tr L2-i,:i )2

3-di,
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Ko7
[0 1 0] 

(Ti)tr 
0

Ill
+ (85)

xi - d ' 1

[1 0 0] (Ti)tr x2 -(di 2 I
Ix3-di,3

0 (86)x4 3x 5  x6

The 6 biases ai,PiTi,di'ldi,2 ,di, 3 per local system could be
included as states in the filter and estimated in order to correct for any

preflight miscalibration. Then, al = 0, 0i = 0 ... would be added to the

equations of motion and additional partial derivative expressions would be

needed. However, only the 6 positions and velocities of the underwater

target were included.

In order to create simulated data and test the state estimation part of

the code, a subroutine RANDOM for generating sequences of Gaussian random

vectors with prescribed covariance was used. Two algorithms were considered

in the derivation of the subroutine. The first proceeds by rotating

coordinates to a system in which the covariance matrix is diagonal. In this

system the multivariate normal density becomes equal to the product of its

marginal densities, and each marginal density can be sampled independently of

the other components. After obtaining a sample vector in this rotated system,

the coordinates are rotated back to the original system.

The second algorithm proceeds by decomposing the multivariate normal

density into the product of the marginal density of the first variate times

the joint density of the remaining variates, conditional upon the value

sampled for the first. This joint density is determined once the first

variate has been sampled from its marginal density. The procedure is then

applied to the second variate and iterated until values have been assigned to

all components of the sample vector. This "Conditional Decomposition

Algorithm" will execute more rapidly than the latter "Matrix Diagonalization

Algorithm" especially for time varying covarionce matrices. Thus it was

chosen as the basis for subroutine RANDOM.

Assuming a constant covariance matrix, RANDOM has been tested by counting

the number of random values within several bands for each component.

Comparison with theory has shown agreement to within a few percent.

Figures 9 and 10 show the evolution of the perturbed state as governed by

equation (3). The initial condition is

Sx 0 - [ 79.2ft O.ft O.ft 0.ft/s O.ft/s 0.ft/s ] tr
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which represents a perturbation in the x location only. However, the
resulting perturbed trajectories in the y and z directions are nonzero due to
cross coupling terms within A(t). A diagonal Qk with small variances was
used to generate the process noise sequence. The position variances were
10 ft 2 and the velocity variances were I0- 3 (ft/s)2 .

Figures 11, 12 and 13 are the corresponding DSRIF results with all of the

prior and process noise information embedded in the merge processor. Each of
the 12 local filters processed 1 measurement variable. A diagonal Rk, with
variances of 10 - 8 deg2 and 1 ft 2 for angular variables and range variables

respectively, was used to generate the measurement noise sequence. The
initial state estimate for all of the local filters was

Sx1 = [179.2ft 100.ft 10.ft 5.97 ft/s 5.97 ft/s -.41 ft/s ] tr

and a diagonal PO(+), with variances of 1 ft 2 and 1 (ft/s)2  for positon

variables and velocity variables respectively, was used to initialize the
merge processor. Figures 11 and 12 show that the rms position estimate errors
quickly decay to steady state mean values after only a few time samples
however, the velocity estimate errors reach steady state after approximately

40 samples. The corresponding estimate error covariances in Figure 13 follow

the same course as expected.

In Figure 14 the process noise levels were multiplied by 5 and 100 for

position and velocity variances respectively. Comparison with Figure 13 shows
that the corresponding estimate error covariances increase as well. This is
as expected since Qk is linearly related to the time updated estimate error
covariance i.e., the conventional covariance time update equation is given by

Pk+l ( - ) = IkPk(+)Ikt r + Ok (87)

Furthermore, the some phenomenon results when Rk is multiplied by a factor of
108 for angular variables and 10 for range variables in Figure 15. The

conventional ccvariance measurement update equation in Josephson Stabilized

form

Pk(+) - [I - KkHk] Pk(- ) [I - KkHk]tr + KkRkKktr (88)

may be combined with the Kalman gain equation

Kk - Pk(-)Hktr [HkPk(-)Hktr + Rk]- 1  
(89)

to show that the time updated estimate error covariance is linearly related to

Rk as well. The result is that

Pk-l(+) = Pk-l(-) + Hktr Rk-1 Hk (90)
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2.2 Extended-Decentrarized Square Root
Information Filtering of MLRS Data

Under SBIR Phase I contract DAAD07-87-C-0103 with the U.S. Army, White

Sands Missile Range (WSMR), MTI previously derived an extended version of the

algorithm and successfully used it to track real Multiple Launch Rocket System

(MLRS) data provided by WSMR. In this section we describe some of the results

obtained along with points of departure for future work that was needed.

Then, in the next section 2.2.1 we finish processing the MLRS data.

On November 11, 1987 six rockets were launched sequentially in time over

a period of 2 hours and 30 minutes at WSMR. Only 1 rocket was airborne at any

one time and thus data association for multitarget tracking was not needed.

The digitized measurements for all six shots were plotted in order to select

the best set as characterized by the least amount of data drop outs and

outlyers.

The MLRS data set contained azimuth and elevation angle measurements

(with respect to each local sensor) from 11 optical trackers (analogous to

passive hydrophones). The origin of the White Sands Coordinate System is at

32.38 degrees latitude and 106.481 degrees longitude. The data set also

contained range, azimuth and elevation angle measurements from 3 radars

(analogous to active sonar) but with respect to the local coordinate system

originating at the launcher. The precise location and orientation of each

sensor was known a priori and no attempt was made to estimate its uncertainty.

In this case, an extended version of the DSRIF is needed since the

nominal rocket trajectories were unavailable. The same is true for underwater

vehicle tracking although the velocities and accelerations are much smaller.

The Extended DSRIF (E-DSRIF) may be derived by extending the observations

equation, linearized about the current estimate, to

y = Hi xk + vk + zk  (91)

where

Shi(X) xk() Hk xk(-) (92)

and

hi(x)
HI (93)k x

X-Xk(-)

and extending the dynamics equation, linearized about the current estimate, to

Xk+1 = Fk Xk + Bk wk + gk (94)
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where

gk f(x)l- Fk Xk(+) (95)
Ix=xk(+)

and

f(x)
Fk = (96)

X=Xk(+)

Substituting equations (91) and (92) into the least squares performance
functional of equation (13) in our DARPA Phase I proposal gives the result

(details were provided in [2]).

Processing on the global scale is the same as for the DSRIF i.e., the

merge steps are exactly as defined in the Phase I proposal. Only processing

on the local scale is different. A major difference between the E-DSRIF and
DSRIF is that the local E-DSRIFilters require knowledge of the globally

optimal estimate xk(±) in.order to compute their first order Taylor series
expansion terms Fk, gk' H1 and zi whereas the DSRIF may compute Xk(±) at any
rate less than the highest data rate. Future research should examine whether

an E-DSRIF algorithm, in which the Taylor series expansions are about the

locally optimal estimates, may be derived.

In order to derive a suitable dynamical model as well as initialize the
filter, the position, velocity, acceleration and jerk of the rocket were
precomputed using finite differencing with &t - .1 seconds. Results were

plotted in Figures 29 through 30 (of [2]) using all of the data provided for
radar #350 except for the first 21 samples (we estimated that all radar

trackers or rt's had locked onto the target by the 22nd sample). Figure 30
indicated that jerk could be suitably modeled as a white Gaussian noise
process with constant mean. Thus, the E-DSRIF was encoded in Fortran '77

using a second order polynomial dynamical model.

Figures 31 through 35 showed the rt and optical tracker (at) measurements
as predicted by the E-DSRIF. Comparison with the actual measurements in
Figures 16, 18, 19, 20 and 22 showed an exact match to within a plotting line
width. A better means of comparison is thus provided below in Tables 2 and 3

where rk is range in feet ri is azimuth in degrees, and 9i is elevation
in degrees. Also, (m,e) corresponds to (actual measurements , estimated
measurements).

The large values of Rk(j,j) for at variables serves to weight the rt data
much more heavily in computing estimates. Decreasing the at measurement
errors to more realistic values should give similar results since the

predicted at measurements matches their actual values very closely.
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k type 12  r12  e)2  r14  r14  014

rkk kkkk

23 m 4,355.61 359.18 18.07 4,305.91 357.65 18.04
e 4,355.61 359.19 18.74 4,355.61 359.19 18.74

24 m 4.683.17 358.91 18.07 4,665.94 358.30 18.09
e 4,658.07 358.16 18.07 4,658.07 358.16 18.07

229 m 52,171.33 358.96 11.88 52,163.32 358.95 11.89
e 52,167.32 358.96 11.89 52,167.32 358.96 11.89

230 m 52,332.09 358.96 11.84 52,324.25 358.95 11.86
e 52,328.15 358.96 11.85 52,328.15 358.96 11.85

459 m 80,328.90 359.22 2.96 80,178.71 359.22 5.00
e 80,254.10 359.22 2.98 80,254.10 359.22 2.98

Table 2: Radar #350 and #394 Measurements and Estimated Measurements for

MLRS. Rk(j,j)=101 0 for at variables and 10.,1.,1. for rt range,
azimuth and elevation variables respectively.

Qk(j,j) = diag [ 1.7 x 10
17  7.4 x 1017 9.3 x 101

7 ]
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k type r3 83 1, o4 ri e

23 m 154.96 1.05 151.Oq 3.29 257.38 3.80
e 154.97 .18 151.87 2.01 255.49 2.88

24 m 154.39 1.19 150.73 3.58 258.16 4.07
e 154.90 .25 151.71 2.14 256.30 3.00

229 m 68.57 28.54 22.78 21.75 , I
e 69.20 26.13 22.93 20.28 331.64 12.52

230 m 22.64 21.65 *** **

e 68.74 26.07 22.80 20.18 331.73 12.48

459 m 26.07 5.58 * I
e 26.32 3.94 10.98 3.66 342.28 2.98

Table 3: G30, G80, Gl10 Measurements and Estimated Measurements for MLRS.
Rk(j,j)=1010 for at variables and 10.,1.,1. for rt range, azimuth
and elevation variables res pectively.

Qk(j,j) = diag [ 1.7 x 101/ 7.4 x 101
7  9.3 x 101

7 j

Figures 36 and 57 showed the global position estimates and corresponding
estimate error covoriances respectively. Again, the rocket positions derived
from radar #350 as compared with the E-DSRIF estimates based upon all of the 5
selected sensors, showed extremely close agreement. The slight difference in
the estimate of height is due to using Tlauch . I instead of its correct
value as defined by equation (34) from [2]. In Table 4 below, the estimates
are compared using the correct coordinate transformation.
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k tp X1 2 3 4 5 6 7 8 9

22 e -14,104. -243,740. 3,754. -296. 3,110. 1,015. 430. -23. 73.
m ....................... same ................................

23 e -14,189. -243,437. 3,798. -280. 3,104. 995. 429. -23. 73.
m -14,076. -243,413. 3,806. -254. 3,120. 986. 436. -23. 80.

24 e -14,184. -243,110. 3,903. 106. 3,271. 1,062. 497. 11. 85.
m -14,160. -243,101. 3,905. -211. 3,118. 994. 421. -35. 49.

229 e -15,018. -196,406. 12,646. -19. 1,639. 1. -.4 -45. -15.
m -15,012. -196,397. 12,641. -17. 1,639. -3. 1.6 -46. -10.

230 e -15,020. -196,242. 12,646. -20. 1,635. -3. -5. -41. -28.
m -15,014. -196,233. 12,641. -18. 1,635. -4. 1.7 -49. 8.

459 e -15,197. -167,388. 5,729. 22. 758. -431. 21. -221. 184.

m -15,202. -167,307. 5,704. 8. 866. -439. .9 -25. 59.

Table 4: Global Position Estimates and Derived Measurements for MLRS.
Rk(j,j)-1010 for at variables and 10.,1.,1. for rt range, azimuth
and elevation variables res pectively.
Qk(J,j) - diag [ 1.7 x 101" 7.4 x 10 1 7  9.3 x 101 7 ]

Finally, the monotonically increasin estimate error covariance

(actually, P0 0 diag [ 101 2 ft2 ... 1012 ft2 /sec 2 ... 101 3 ft2 /sec 4 ... j
was used to initialize the covariance propagation so that the first step is a
large, off scale decrease to approximately 100 ft2 ) is due to our using values
of Qk approximately 12 orders of magnitude higher than its precomputed, sample
value. A more realistic value should result in a Pk with quite the opposite

behavior.
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2.2.1 New Results

The E-DSRIF was successfully used to track an MLRS data set in previous
work however, a monotonically increasing estimate error covariance was
observed ( see Figure 37 of [2]). This is due to our using values of Ok
many orders of magnitude higher than its precomputed sample value in order to
compensate for any errors in the model. For this subtask, Ok was adjusted
interactively until an acceptable covariance function was obtained. As
Figures A through C indicate, more realistic values of Qk results in a Pk
with quite the opposite (and more desirable) behavior previously illustrated.

Ok starts high at 103 in Figures A through C and decreases monotonically
to 10-18. Both the position and velocity estimate error variances are still
unstable when Qk = 103 however both reach stability when Qk = 10-2. Not
much improvement is gained by decreasing Qk beyond 10- 3 . One of the
measurement variables from each of the 5 sensors selected were also plotted
(not shown here) in Figures A through C. This was done in order to see
whether the oscillations in estimate error variances, which begin to occur
when Qk = 10-2 , are correlated with the time intervals of data drop-out.

Next, the ot measurement errors were kept artificially high in Phase I.
These large values of Rk for at variables serves to weight the rt data much
more heavily in computing estimates. In Figures 0 through F (where Qk=10 1 )
and G through I (where Qk - 10-3), Rk was decreased for 3 of the 6 at
measurement variables. Decreasing some of the at measurement errors from 101 0

to more realistic values near 1 improved the results significantly by
increasing the rate of convergence, especially near the initial time point.

Finally, an adaptive form of the E-DSRIF wherein

Ok = factor * Pk(+) (97)

was encoded. This simple method for tuning the filter by using a feedback
loop to compute Qk, gave exceedingly good results as shown in Figures J
through L (where all measurement errors were chosen to be the nominal Phase I
values). Best results were obtained using a scale factor of .001, and this
was used in the last set of Figures M through 0. In this latter set,
again Rk was manually decreased for 3 of the 6 at measurement variables.
Overall, the best results (smallest estimate errors) are shown in Figures M
and 0, for the case Rk(j,j) = 10-1 for at variables. Adaptation by direct
feedback of Pk(+) is a less sophisticated means of estimating Qk in real
time than the method of maximum likelihood albeit, it is much simpler to
implement.

3.0 Estimates of Technical FeasbMty

VLSI (Very Large Scale Integration) technology has been developed to the
point where high speed floating point processors may be concatenated to form
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compact supercomputers with far greater throughput than uniprocessor machines.

Thus, there is considerable interest within the signal processing community in

the development of parallel versions of conventional algorithms. MTI has

collaborated with Dr. G.J. Bierman to develop a parallel form of the Kalman

filter that has several very unique and important features. We believe that

utilization of these features will result in the design of an integrated

tracking system that exhibits much improved performance over any "isolated"

approach to undersea surveillance or test range tracking.

Specifically, our Decentralized Square Root Information Filter (DSRIF)

[1] allows each group of measurement variables, the process noise statistics

and the prior information about the initial state to be processed in separate

but locally optimal filters. Globally optimal state estimates and estimate

error covariances may then be computed by combining local filter outputs on

demand. This will allow the analyst to identify the contribution of each

measurement group, the process noise and the prior information about the

initial state to the global state estimate and estimate error covariance

without additional computation.

Furthermore, the process noise and prior information may be distributed

amongst the data processing filters in order to improve upon the fault

tolerant characteristics of the nominal algorithm when real-time signal

processing is an issue. In this case, the estimates and covariances should

gracefully degrade from global optimality as local processors fail. Thirdly,

the algorithm is based upon numerically reliable matrix factorization methods

which, unlike the CKF, will never fail.

The objective of Phase I research was to validate the DSRIF equations by

testing its ability to track both predetermined and unknown trajectories when

perturbed by white Gaussian noise. The state estimates and error covariances

obtained were found to be identical (when printed to 10 significant digits)

with those of a SRIF implemented in centralized form with all calculations

performed in double precision arithmetic. Furthermore, an adaptive version of

the extended DSRIF (E-DSRIF) was successfully used to track real Multiple

Rocket Launch System data obtained from the WSMR.

In order to determine the feasibility of our distributed approach to

multisensor tracking, several specific technical objectives must be met.

First and foremost, the basic DSRIF theory needs to be extended to enable the

tracking of multiple targets. This requires that a theory for associating

data with targets, based upon the DSRIF (and not the SRIF which already

exists, see [2]), be developed. Correlation of measurements with targets can

best be done using a hypothesis testing approach. The idea is to select the

correlation of measurements with targets that has maximum probability given

the data. Calculation of all combinations to form the entire set of these

conditional probabilities can be prohibiting, especially in a dense target

environment. A major advantage in using the DSRIF is the tremendous reduction

in computational cost associated with this calculation.

Secondly, the DSRIF is a new algorithm which has undergone only limited

testing in Phase I research. Extensive testing within a multisensor

multitarget tracking scenario is needed. Other theoretical questions such as

the development of a delayed-state DSRIF for processing range-rate

measurements, a method for isolating faulty sensors, and efficient
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implementations of the DSRIF that facilitate high data rates need to be

addressed.

Finally, consideration needs to be given to the design of the tracking

network both at the global and local levels. The major question here is
whether a sufficient data rate can be achieved using current chip technology.

Another question is whether the architecture can be reconfigured (in software)

to implement other members of the family of DSRIFs. A multitude of test range

scenarios is envisioned so that a robust system is needed. At one extreme,

test vehicles may include slow moving submarines with well defined nominal

trajectories a priori while at the other, multiple smart torpedoes with

maneuvering capability is possible. The key to a successful network design is
to employ a more or less sophisticated version of the algorithm depending upon

the particular scenario. Thus the network must be adaptable. For example,

preflight simulations of the proposed shot using high fidelity hydrodynamic

models can yield good values for the process noise levels and a basic DSRIF

should result in good tracking performance. However, a sudden departure from
the nominal trajectory would require a detection mechanism as part of the

algorithm and adjustment of Qk in real time. A DSRIF based multisensor

laboratory tracking experiment should be performed prior to deployment of a

test range prototype.
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